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Abstract. We measured the static structure factor S(k)  of dense fluid helium by neutron 
diffraction as a function of density (at fixed temperature T =  13.3K) and as a function of 
temperature (at fixed number density n = 18.7 nm-'). We give the results and calculate the 
density derivative at T = 13.3K; n = 22.0nm-3. We use this density derivative, which is 
determined by the triplet correlation function gdr ,  s), to test the proposal for&, I) made 
by Winfield and Egelstaff. We find that this proposed form of g,(r,s) gives a reasonable 
prediction for our experimental derivative. Hence, we use this proposal to estimate the 
squareofthe energy-densitycorrelationfunction at equaltimes,12(k),fromourexperimenu, 
using the temperature derivative at n = 18.7 "'and T = 13.3 K. 

1. Introductioa 

In the theory of simple liquids there exist numerous examples in which correlation 
functions of more than two particlesplay an important role in the macroscopicproperties 
of a liquid, such as in calculating the energy of a system (Barker et ~11971).  The pair 
correlation function g(r )  can be determined directly by means of x-ray experiments or 
by neutron diffraction. One then measures the Fourier transform S(k) of the pair 
correlation function, given by 

N 1 
S(k) = ~ ( x  eik.(rj-ri)) = 1 + n dre""[g(r) - 11 

2 . i  

in which r;denotes the position of particle i, Nis the total number of particles in a volume 
V, k = Ikl is the Fourier wavenumber, the brackets denote the canonical ensemble 
average and n = N/Vis the number density. 

Higher order correlation functions, like the triplet correlation function &(r, s), 
cannot be determined directly. However, by measuring the temperature and density 
dependence of the pair correlation function g(r)  (or equivalently the static structure 
factor S(k)) one can get indirect information on higher order correlation functions 
because the derivatives are determined by these higher order functions. 

We have carried out fivediffraction experimentson heliumandcalculated thedensity 
and temperature derivatives of the static structure factor. We use these derivatives to 
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Table 1.Thermodynamic ( n . p .  T)statesofhelium for whichS(k) is measured. 

T W )  
)z (nm"') 4.29 13.3 21.89 
- 
I8 7 1.12bar 40.3bar 78.4bar 
22.0 - 58.3 bar - 
24.8 - 81.6 bar - 

Tsbk 2. Merge parameters used in the diffraction experiments at ISIS 

Ak/k  k E* J.0 

Der. angle % nm-' meV nm 

4 8" 1 1  1-12 3.0-425 0.5M.044 
9.6" 6 4-25 12.1-470 0.260.042 
20.5" 2.8 9-50 10.W21 0.2W.044 
35.3' 1.7 30-80 51.5-366 0.1M.047 

test a model for the triplet correlation function and to estimate the energy-density 
correlation function at equal times. 
The organization of this paper is as follows. In section 2 we describe the experiments 
and show the S ( k ) ,  in section 3 we discuss the density derivative of S(k)  and compare it 
with the model for&, s) as proposed by Winfield and Egelstaff (Winfield and Egelstaff 
1973). In section 4 we discuss the temperature derivative and use the Winfield-Egelstaff 
model to calculate the energy-density correlation function at equal times. 

2. Experiment 

The experiments were carried out at the Rutherford Appleton Laboratory using the 
time-of-Hight (TOF) diffractometer~~o. We measured thestructurefactorS(k) ofhelium 
for five thermodynamic states, which are listed in table It. 

Forour experiments weused asamplecontainer whichconsistcdofa singlevanadium 
cylinder of height 5 cm, diameter 2 cm and wall thickness 0.05 cm (Zoppi et a/ 1989). 
The cross section of the incident beam was 1.5 x 4.0 cm2. To avoid large inelasticity 
corrections. only the detector groups at small scattering angles (5,10,20 and 359 were 
used. The static structure factors S(k)  were calculated from the TOF spectra using the 
LAD standard correction programs (Soper et a1 1989). These programs correct the 
neutronspectra for background and multiple scattering, carry out absorption and inelas- 
ticity corrections and normalize the spectra to a vanadium standard. Finally, the results 
of all the detector groups are merged to produce a single S(k) .  The relevant parameters 
forthislaststeparelistedin table2.h whichE,,andh,denotetheenergyandwavelength 
range of the scattered neutrons, respectively. We note that the multiple scattering 

t A tabulated version o lS lk )  isavailable upon request. 
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Figure 1. ( a )  The meaaureo Italic slruclure 13~101 S ( k )  35 a lunnion of the number densir) n 
aiconsranllcmperalurrT = 13.3 K(rop:,t =?J.Snm.’(S(k] - O.B),middle:n = 22.0nm.’ 
( S l k ]  T 0.4). bollom. n = 18.7nm.’) ( b )  The measured static slmcrure fwtar S ( x )  3s a 
iunclion of rhr rempcrature Tar cons13nl number denst[) n = 18.7 nm-’ (lop T = 21.9 K 
( S ( h )  7 0.5). middle T = 13.3 K ( S ( k )  7 0.4). bollom. T = 4 3 K ) .  The S(0, valuss 
(crosses) are oblancd from independcnr 1hermod)ndm.c comprecsibilir) data (Sychc, rral 
1987) 

correction is of the order of a few percent because of the small scattering cross section 
of the helium atoms. The average scattering fraction of our sample was 5%. 

We plot the structure factors S(k)  as a function of density (figure l ( a ) )  and as a 
function of temperature (figure l(6)) for wavenumbers k up to 60 nm-‘. One can see 
from this figure that there is a shift in peak position when the density or temperature is 
vaned. This is as expected because the effective particle diameter oincreases when the 
density and/or temperature is lowered and the peak position of S(k)  is roughly given by 
ko = 2n. Furthermore, the increase of U with decreasing temperature is enhanced by 
the quantum nature of the light helium atoms (the helium atom is less sharply defined 
at lower temperatures, resulting in a larger effective diameter). 

To check our data, we compare the S(k) at 4.29 K and SVP with the S(k)  measured 
by Svensson and coworkers (Svensson et allY80) for (almost) the same thermodynamic 
state (4.27 K) and SVP) in figure 2 .  It can be seen in this figure that the two data sets 
almost coincide. The k resolution at k = 20 nm-’ is 0.5 nm-’. The points at k = 0 are 
taken from independent thermodynamic data (Sychev eta1 1987) according to 

S(0) = nkBTXT = ykBT/mcZ (2.1) 

with n the number density, xT the isothermal compressibility, kB Boltzmann’s constant, 
T the temperature of the Ruid, m the mass of a helium atom, c the adiabatic speed of 
sound and y = c,/cv the ratio of specific heats (cp and cy denote the specific heats 
at constant pressure and at constant volume, respectively). We now proceed with a 
discussion of the density derivative of S(k)  at T = 13.3 K and n = 22.0 nm-’. 
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Figure 2. Comparison of the experimentally 
obtained S(k) at 4.29 K and SVP (errorburs) with 
the S(k) measured by Svensson and coworkers at 
4.27 K and SVP (Svensson et of 1980) (dots). 

3. The density derivative 

To determine the density derivative of S ( k )  we use the three data sets at 13.3 K. We 
have calculated the derivative at n = 22.011m-~ by simple numerical differentiation 
according to 

(a~(k)/an)I~-,,.,, = W k ,  n z )  - W , n l  ) I / h  - " I )  + W ( k ,  n3)  - S ( k  n2)l/(n3 - n d  

(3.1) 
with n ,  = 18.7 The density derivative 
obtained is plotted in figure 3. 

We now compare this derivative with predictions based upon an expansion of the 
triplet correlation functiong3(r, s) in terms ofthe pair correlation functions, the socalled 
'convolution approximation' (Feenberg 1969). We will follow the line as set out by 
Egelstaff (1973). We remark that the following expansion is valid for a classical system 
and could well fail at very low temperatures. 

The density derivative of the pair correlation function g(r)  is given (exactly) by 
(Gubbins er ai 1978) 

n2 = 22.0nm-' and n3 = 24.8 

where g, is defined analogously to g ( r )  as 

(3.3) 

A formally exact relation expresses g3 again in terms of g, 

The expansion of g3(r. s) we use is based upon the theoretical result of Abe (1959) who 
gdr9 s) = g(r)g(s)g(r - s) exp[r(r, s, lr - 4; 41. (3.4) 

0.8 , , , 
, I , (  

-0.8 U 
0 1 5  30 95 50 

k [m-'1 

Figure 3. The experimental density derivative of 
S(k)atconstanttemperature T =  13.3 K(number 
density n = ZZOnm-') (crosses) compared with 
approximation (3.7) from tho text (dots). 
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has expanded (3.4) using 

r ( r , s ,  / r  - SI; n )  = n h(w)h(r - w)h(w - s) dw + O(h') (3.5) I, - with h(r) = g ( r )  - 1. 

g3(r, s) = 1 + h(r) + h(s) + h(r - s) 

Expanding the exponent in (3.4) we obtain (Egelstaff 1973) 

+ h(r)h(s) + h(s)h(r - s) + h(r - s)h(r) 

+ n Iv h(w)h(r - w)h(s - w) dw + O(h3) (3.6) 

which leads to the following equation for the density derivative of the structure factor 
(using all the lines of (3.6)) 

S(O)n(dS(k)/an)l, = S(O)S(k)(S(k) - 1). (3.7) 
Equation (3.7) has been applied to the structure factors of Kr (reduced density n* = 
nu' = 0.2 at T/T,  = 1.0) (Winfield and Egelstaff 1973), and of Ar (n* = 0.8) (Verkerk 
1985) and Ne (n* = 0.75) (Egelstaff 1973, Verkerk 1985) both at T/T, = 0.8, with T, 
the critical temperature. For the low density Kr case, (3.7) gave a reasonably good 
approximation. However, for Ar and Ne, only a (weak) qualitative agreement was 
observed between the data and the prediction of (3.7), albeit that the inclusion of the 
subsequent lines of (3.6) gradually improved the result. 

We have applied approximation (3.7) to our helium data at intermediate densities 
(n* - 0.5; T = 2STJ and we plot the result in figure 3. It can be seen from this figure 
that (3.7) not only holds qualitatively for helium, but (semi-) quantitatively as well. So 
apparently, triplet correlation functions do play a role in He well above the critical 
temperatureandare welldescribed, at the intermediate density considered in thispaper, 
by (3.7) which is an expansion in the density. A comparison with the (real-space) results 
for the density derivatives in liquid helium close to the lambda transition (Ravecht and 
Mountain 1974, Mozer et a1 1974) remains to be done. 

We end this section with two remarks. First, an equivalent way to express (3.7) is by 
stating that the Fourier transform C(k) of the direct density correlation function 
is independent of the density, i.e. dC(k)/an = 0, with C(k)  * S ( k )  = (S (k )  - l ) /n  
(Fredrikze 1985). The symbol '*' denotes the convolution product. 

Second, (3.6) can be generalized up to O(h4) by including the term h(r)h(s)h(r - s). 
Equation (3.7) then reads 

S(O)n(aS(k)/an) = S(O)S(k)(S(k) - 1) + (l/n)(S(k) - 1) * (S(k)  - 1)'. (3.8) 

We carried out the convolution integral numerically for our experiment, which could 
easily be done as a result of the accuracy of the present experiments. We find that this 
extra term is larger, by a factor of 100, than the first term on the right-hand side of (3.8). 
Such large discrepancies have also been found in related work (Haffmans ec a! 1988). 
We therefore conclude that although (3.7) seems to work properly in the case of our 
helium experiments, it is by no means certain that the expansion in powers of h (see 
(3.5)) can be extended straightforwardly to higher powers of h. A regrouping of higher 
order terms might prove to be essential in obtaining meaningful results. 

We now turn to a discussion of the temperature derivative of helium at 13.3 K and 
18.7 
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4. The temperature derivative 

We have calculated the temperature derivative at T =  13.3 K and n = 18.7 by 
numerical differentiation using the three data sets at n = 18.7 nm-? in analogy to the 
determination of the density derivative (see (3.1)). We plot the temperature derivative 
at constant density in figure 4. 

As in section 3, we will follow the lines as set out by Egelstaff. Egelstaff has pointed 
out that when (3.7) is valid. one can use the temperature derivative to determine the 
energy-density correlation function at equal times, l(r), from the experiment. Egelstaff 
therefore reduced the general expression for aS(k)/aT at constant pressure to the 
following (Egelstaff 1973): 

T(aS(k)/aT)I, = ( i / d B T ) ( P ( k )  - s 2 ( k ) )  - n ~ ( k ) ( ~ ( k )  - 1). (4.1) 

Here &denotes the thermal expansion coefficient and l ( k )  is the Fourier transform of 
w .  

[ ( k )  = 1 + n (l(r)  - 1) exp(ik. r) dr ( 4 4  
Jv 

[(r)  is the correlation function between the local energy and local density at equal times 
given by 

where 

/ ( r )  = (E(r)n(O))/Ea 

and E(r)  is the sum of the local kinetic and potential energy density. 
Equation (4.1) is derived in a manner similar to the derivation of (3.7). However, 

this time not only has the triplet density correlation function, g3(r ,  s), been expanded 
according to (3.6), but the triplet energy-density correlation function, 13(r, s), has been 
expanded as well. Then, using all three lines of (3.6) for both g3(r,  s) and 13(r, s), one 
obtains (4.1) (Egelstaff 1973). 

Since the temperature derivative at constant pressure, p ,  in (4.1) is related to 
the temperature derivative at constant density via the density derivative at constant 
temperature according to 

AS(k)  AS(k) an =d. +bnl,aTI, 

(4.3) 

(4.4) 

We can use (4.1) and (4.3) to determine the difference 12(k) - S’(k) directly from our 
experiment. Onecan immediatelysee bycomparing(4.1) and (4.3) that the second term 
on the right-hand side of (4.1) is nothing more than approximation (3.7) for the density 
derivative at constant pressure. Therefore, the first term on the right-hand side of (4.1) 
is an approximation for the temperature derivative at constant density. The amplitude 
of the temperature derivative at constant density is quite small (see figure 4) and the 
average energy per particle is 16.7 K (Sychev eta1 1987), so the maximum difference 
between l’(k) and S2(k )  is less than 0.1, or12(k) = S2(k).  
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Figure 4. The experimental temperature deriva- 
tive of S ( k )  at mnstant number density n = 
18.7 nm-'and temperature T = 13.3 K. 

Figure 5. (a) the difference P(k)  - S'(k) and (b)  
P ( k )  obtained from experiment. The values 
P(0) - Sz(0) and f ( 0 )  (both denoted by crosses) 
in (a) and ( b ) ,  respectively, are obtained from 
independent thermodynamic data. 

The fact that 12(k) and S2(k )  are very much alike can easily be understood. Since the 
kinetic energy is the major contribution to the total energy (Eun = 20 K per particle, 
E,,,,, = 16.7 K per particle), the peaks in the energy-density correlation function and in 
the density-density correlation function almost coincide and both functions are nor- 
malized tounityfor large k. So, approximation (4,l)givesaresult for12(k)inaccordance 
with what one would expect. 

Finally, we wish to point out that in determining 12(k) directly from experiment it is 
better to perform measurements at constant density than at constant pressure. To do 
so, we first calculate the temperature derivative at constant pressure using (4.4) with 
(Gn/ST)I,.,,,,,, = -1.06nm-3K-' (Sychev er al 1987). Then we use this derivative 
together with (4.1) to determine the function 12(k) - S2(k) .  We plot this result in figure 
5 ( a ) .  Figure 5 ( a )  should in principle be the same as figure 4 within a constant factor. 
However, the two figures differ due to the use of approximation (3.7) instead of the true , 

density derivative. Although (3.7) is a quite good approximation, it leads to unnecessary 
errors in lz(k), especially at low wavenumbers. This is plotted in figure 5 (b). Instead of 
being almost equal to Sz(k) ,  P ( k )  is negative for a few k values in the low-k region. The 
value of P(k)  at k = 0 is calculated to be 0.063 using the exact relation 

Therefore, if the aim is to determine f2 (k )  from neutron scattering experiments, it is 
advisable to measure at constant density instead of constant pressure. 
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l(0) = S(0) + (l/E)(ps(O) - nk,Por) .  (4.5) 
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